Cooperative Extension San Joaquin County
University of California
Cooperative Extension San Joaquin County

Posts Tagged: UC Berkeley

Fighting drought with soil

Soil is an often overlooked tool to fight drought.
A team of University of California scientists recently received a $1.69 million grant to use several UC agricultural research stations to study an often overlooked tool to fight the drought: soil.

The team, led by Samantha Ying, an assistant professor of environmental sciences at UC Riverside, received the grant from the University of California Office of the President.

The funding will allow for the establishment of the University of California Consortium for Drought and Carbon Management (UC DroCaM), which will design management strategies based on understanding soil carbon, the soil microbiome and their impact on water dynamics in soil.

The researchers will conduct field and lab research on microbiological, biophysical, and geochemical mechanisms controlling soil formation and stability under different row crops (tomatoes, alfalfa, wheat), farming practices (carbon inputs and rotations) and irrigation methods (furrow and flood, microirrigation).

Samantha Ying, an assistant professor of environmental sciences at UC Riverside.
Information on mechanisms will be integrated into a regionally-scalable predictive model to describe soil carbon dynamics and estimate the response of agricultural systems to drought.

Field research will initially be conducted at three UC Research and Extension Centers (Kearney, West Side and Desert) the Russell Ranch Sustainable Agriculture Facility near UC Davis.

Recommendations will then be made for broader monitoring and field experiments throughout the state based on input gained from local growers and citizens at workshops at the agricultural research stations. Ultimately, the hope is to expand and involve all nine research and extension centers from the Oregon border to the Mexican border.

“Having agricultural research stations throughout the state is a huge part of this project,” Ying said. “It is going to help us create one of the best research centers in the country focused on soil and drought.”

There is also a public engagement component. Citizens will be recruited to participate in workshops to learn how to monitor and sample their local soils. Information will then be imputed into an online soils database that will help create a map of the biodiversity of agricultural soils in California.

Ying's collaborators are: Kate Scow and Sanjai Parihk (UC Davis); Eoin Brodie and Margaret Torn (UC Berkeley); Asmeret Berhe and Teamrat Ghezzehei (UC Merced); and Peter Nico and William Riley (Lawrence Berkeley National Laboratory).

The grant is one of four awards totaling more than $4.8 million from University of California President Janet Napolitano's President's Research Catalyst Awards.

Posted on Monday, May 2, 2016 at 12:25 PM

Hummingbirds are noisy romancers


Forget bird watching; next time you spot a hummingbird, listen.

Most of us pause to gaze at the tiny birds’ impressive mid-air hovering, part of their hunting behavior, but males of some hummingbird species generate loud sounds with their tail feathers while courting females.

Now, for the first time, the cause of these sounds has been identified: a paper published in the Sept. 9, 2011, issue of Science reveals that air flowing past the tail feathers of a male hummingbird makes his tail feathers flutter and thereby generate fluttering sounds.

Watch a video of hummingbird tail feathers in an wind tunnel.

Male hummingbirds only produce fluttering sounds during their elaborate courtship rituals. Typically, during such a display, a male hummingbird will climb into the air five to 40 meters, and then quickly dive-bomb down past a perched female; when the courting male bird reaches the lowest point of his dive, he rapidly spreads and then closes his tail feathers. This spreading exposes the tail feathers to air, which causes them to flutter and generate sound, according to Christopher Clark of Yale University, lead author of the study.

Clark's research, which he began as a graduate student at the University of California, Berkeley, shows that the males of each hummingbird species have their own signature sound — largely determined by whether and how the fluttering frequencies of its different tail feathers interact with one another and blend together.

Other factors, such as the size, shape, mass and stiffness of the hummingbird's feathers, also help determine the tone of each species' particular sound.

In addition to diving during courtship rituals, a male hummingbird may also brandish showy ornaments and produce sounds from other feathers besides his tail feathers.

All this, just to impress that special lady.

Clark analyzed the fluttering sounds of hummingbird feathers by measuring the fluttering feathers with a Scanning Laser Doppler Vibrometer — an instrument that is used to measure the vibrations of a surface — and by viewing high speed videos of the tail feathers of hummingbirds in a wind tunnel.

The study was co-authored by Damian Elias, also of UC Berkeley.

— Adapted from a story by the National Science Foundation.

Posted on Wednesday, October 5, 2011 at 9:41 AM
  • Author: Ann Brody Guy

California's climate-change law: Behind the scenes

Read the bill. That was the first policy lesson that Linda Adams, Secretary of the California Environmental Protection Agency, brought to the newly minted Ph.D.’s at the Graduate Research Symposium of UC Berkeley’s Department of Environmental Science, Policy, and Management (ESPM) earlier this month, where she delivered the keynote address.

The bill Adams was referring to was AB 32, the landmark Global Warming Solutions Act of 2006, on which she was the lead negotiator. She told a harrowing tale of the legislative pipeline.

“When Governor Schwarzenegger appointed me in 2006… I was just vaguely aware of AB 32, which was actually very close to his desk,” Adams said. “Being a good former legislative staffer, the first thing I did was read the bill. And much to my horror, what the governor wanted — a market-based approach to reducing emissions — was not only not in the bill but actually prohibited.”

Adams’ discovery resulted in a fight for a comprehensive approach to reducing emissions that California businesses would support, including a cap-and-trade program and complementary measures such as low-emissions vehicles, renewable energy, and increased energy efficiency. The bill that ultimately passed was the nation’s first major climate-change legislation, and was what the California Air Resources Board refers to as the “first-in-the-world comprehensive program of regulatory and market mechanisms to achieve real, quantifiable, cost-effective reductions of greenhouse gases.”

Her achievements resonated with the audience; environment and climate-change related work is the one common thread among the diverse lines of scientific inquiry pursued at ESPM. Research presented by the graduating Ph.D. students included modeling the impact of climate change on a Bay Area redwood forest, studying changes bird populations in the Sierrra Nevada, analyzing the politics of chemical monitoring, and studying the growth of eco-labels and sustainability ratings—so-called “green” products and services.

Putting the science in government

This broad spectrum of inquiry meshed well with the key theme of Adam’s talk: Science matters.

“Every policy regulation we make here at Cal EPA is based on science,” Adams said. “We rely on our experts when developing policies and… we depend on the accuracy, the timeliness, the relevance, and the needed answers they can supply,” she said.

To the delight of a room filled with fresh job-seeking Ph.D.'s, Adams said that Cal EPA employs hundreds of scientists in various areas of expertise.

What do they do? As an example, Adams cited an agency-wide investigation into a spike in birth defects in the small town of Kettleman City.

“It involved scientists from each department looking into potential links to water, soil, air, and/or pesticide pollution,” she said. “The Department of Pesticide Regulation provided models of pesticide activity in the formative months of pregnancy; the Air Resources Board (ARB) monitored the air in the area; the Water Board tested the tap water and canal for arsenic and other pollutants; and the Department of Toxic Substances Control tested the soil for contamination.

The role of forests

The new world of AB 32 will generate the need for new areas of scientific expertise at Cal EPA. In additional to a full spectrum of chemical and environmental monitoring, there will be growing demand for forestry and reforestation knowledge.

In the legislative negotiations, businesses asked for, and won, the market-based cap-and trade-program. They were not so keen on the “cap” part, according to Adams, but the “trade” part gave them the ability to purchase offsets. This means that not all their reductions have to come at their factory or refinery location; a limited portion can from areas outside their actual area of operation.

That translates to forests. Of the four offset protocols adopted by the ARB, two were forestry protocols: one for urban forestry and one for U.S. forest reforestation and forest management projects.

“We already have over 100 forestation and forest management projects submitted for approval as offsets all over the United States,” Adams said. Cal EPA is also exploring the international market for carbon reduction, through cutting-edge pilot forest redevelopment programs in Chiapas, Mexico, and Acre, Brazil.

Calling to account

As the state begins to implement AB 32 and build a national and international accounting framework, Adams said science will be especially important.

“We need to ensure that all reductions achieved are real, permanent, quantifiable, verifiable, and enforceable, and we rely on the science to provide reduction and emission calculation methods, to identify procedures for project monitoring, reporting parameters, and verification,” she said. “We need the scientific backing to reinforce the policy outcomes we seek, and the research to determine if those sought-after outcomes are possible.… It’s all one continuous cycle.”

In addition to the keynote address, the May 6 Berkeley symposium, dubbed “Gradfest,” also had 15 research presentations, two poster sessions, and a career panel and to help usher ESPM graduates into the various professional arenas of academia, government, nonprofit, and the private sector.

Pictured above, left to right: Alex Harmon-Threatt, Graham Bullock, Mike Wasserman, Secretary Linda S. Adams, Pauline Kamath, Morgan Tingley, and Ben Ramage

Posted on Wednesday, May 25, 2011 at 4:38 PM
  • Author: Ann Brody Guy
 
E-mail
 
Webmaster Email: mdhachman@ucdavis.edu